\begin{align} \int_0^1 x \log_e x dx &= \left[ \frac{x^2}{2} \log_e x \right]_0^1 - \frac{1}{2} \int_0^1 x^2 \cdot \frac{1}{x} dx \\ &= - \frac{1}{2} \int_0^1 x dx \\ &= - \frac{1}{2} \left[ \frac{x^2}{2} \right]_0^1 \\ &= - \frac{1}{4} \end{align}
\begin{align} \int_0^1 \frac{x^2}{\sqrt{1 - x^2}} dx &= \int_0^\frac{\pi}{2} \frac{\sin^2 \theta}{\cos \theta} \cdot \cos \theta d \theta \ \ \ \ \ \ \ \ ( x = \sin \theta ) \\ &= \int_0^\frac{\pi}{2} \sin^2 \theta d \theta \\ &= \int_0^\frac{\pi}{2} \frac{1 - \cos 2 \theta}{2} d \theta \\ &= \frac{\pi}{4} \end{align}