宇都宮大学 大学院 地域創生科学研究科
工農総合科学専攻 機械知能工学
2022年8月実施 機械力学と制御




時間微分 $d/dt$ を $\dot{}$ で表す。

(1)

\begin{align} \boldsymbol{p}_1 &= \left( l_1 \sin \theta_1, l_1 \cos \theta_1 \right) \\ \boldsymbol{p}_2 &= \left( l_1 \sin \theta_1 + l_2 \sin \theta_2, l_1 \cos \theta_1 + l_2 \cos \theta_2 \right) \end{align}

(2)

\begin{align} \dot{\boldsymbol{p}}_1 &= \left( l_1 \dot{\theta}_1 \cos \theta_1, -l_1 \dot{\theta}_1 \sin \theta_1 \right) \\ \dot{\boldsymbol{p}}_2 &= \left( l_1 \dot{\theta}_1 \cos \theta_1 + l_2 \dot{\theta}_2 \cos \theta_2, -l_1 \dot{\theta}_1 \sin \theta_1 - l_2 \dot{\theta}_2 \sin \theta_2 \right) \\ T_1 &= \frac{1}{2} m_1 \left| \dot{\boldsymbol{p}}_1 \right|^2 \\ &= \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2 \\ T_2 &= \frac{1}{2} m_2 \left| \dot{\boldsymbol{p}}_2 \right|^2 \\ &= \frac{1}{2} m_2 \left( l_1^2 \dot{\theta}_1^2 + l_2^2 \dot{\theta}_2^2 + 2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos ( \theta_1 + \theta_2 ) \right) \end{align}

(3)

\begin{align} U_1 &= -m_1 g y_1 \\ &= -m_1 g l_1 \cos \theta_1 \\ U_2 &= -m_2 g y_2 \\ &= -m_2 g ( l_1 \cos \theta_1 + l_2 \cos \theta_2 ) \end{align}

(4)

\begin{align} L = T_1 + T_2 - U_1 - U_2 \end{align}

(5)

\begin{align} \frac{\partial L}{\partial \dot{\theta}_1} &= \frac{\partial T_1}{\partial \dot{\theta}_1} + \frac{\partial T_2}{\partial \dot{\theta}_1} \\ &= m_1 l_1^2 \dot{\theta}_1 + m_2 l_1^2 \dot{\theta}_1 + m_2 l_1 l_2 \dot{\theta}_2 \cos (\theta_1 + \theta_2) ,\\ \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_1} &= m_1 l_1^2 \ddot{\theta}_1 + m_2 l_1^2 \ddot{\theta}_1 + m_2 l_1 l_2 \ddot{\theta}_2 \cos (\theta_1 + \theta_2) - m_2 l_1 l_2 \dot{\theta}_2 (\dot{\theta}_1 + \dot{\theta}_2) \sin (\theta_1 + \theta_2) ,\\ \frac{\partial L}{\partial \theta_1} &= \frac{\partial T_2}{\partial \theta_1} - \frac{\partial U_1}{\partial \theta_1} - \frac{\partial U_2}{\partial \theta_1} \\ &= - m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \sin (\theta_1 + \theta_2) - m_1 g l_1 \sin \theta_1 - m_2 g l_1 \sin \theta_1 \\ &= - m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \sin (\theta_1 + \theta_2) - (m_1+m_2) g l_1 \sin \theta_1 \end{align} なので、オイラー-ラグランジュ方程式は次のようになる: \begin{align} m_1 l_1^2 \ddot{\theta}_1 + m_2 l_1^2 \ddot{\theta}_1 + m_2 l_1 l_2 \ddot{\theta}_2 \cos (\theta_1 + \theta_2) - m_2 l_1 l_2 \dot{\theta}_2^2 \sin (\theta_1 + \theta_2) + (m_1+m_2) g l_1 \sin \theta_1 &= 0 \end{align}

(6)

\begin{align} \frac{\partial L}{\partial \dot{\theta}_2} &= \frac{\partial T_2}{\partial \dot{\theta}_2} \\ &= m_2 l_2^2 \dot{\theta}_2 + m_2 l_1 l_2 \dot{\theta}_1 \cos (\theta_1 + \theta_2) ,\\ \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_2} &= m_2 l_2^2 \ddot{\theta}_2 + m_2 l_1 l_2 \ddot{\theta}_1 \cos (\theta_1 + \theta_2) - m_2 l_1 l_2 \dot{\theta}_1 (\dot{\theta}_1 + \dot{\theta}_2) \sin (\theta_1 + \theta_2) ,\\ \frac{\partial L}{\partial \theta_2} &= \frac{\partial T_2}{\partial \theta_2} - \frac{\partial U_2}{\partial \theta_2} \\ &= - m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \sin (\theta_1 + \theta_2) - m_2 g l_2 \sin \theta_2 \end{align} なので、オイラー-ラグランジュ方程式は次のようになる: \begin{align} m_2 l_2^2 \ddot{\theta}_2 + m_2 l_1 l_2 \ddot{\theta}_1 \cos (\theta_1 + \theta_2) - m_2 l_1 l_2 \dot{\theta}_1^2 \sin (\theta_1 + \theta_2) + m_2 g l_2 \sin \theta_2 = 0 \end{align}