\begin{align} 1 - \sigma(x) &= 1 - \frac{1}{1 + \exp(-x)} \\ &= \frac{\exp(-x)}{1 + \exp(-x)} \\ &= \frac{1}{1 + \exp(x)} \\ &= \sigma(-x) \end{align}
\begin{align} \frac{d}{dx} \sigma(x) &= \frac{\exp(-x)}{(1+\exp(-x))^2} \\ &= \frac{1}{1+\exp(-x)} \cdot \frac{\exp(-x)}{1+\exp(-x)} \\ &= \frac{1}{1+\exp(-x)} \cdot \frac{1}{1+\exp(x)} \\ &= \sigma(x) (1-\sigma(x)) \end{align}
逆関数の定義より、 \begin{align} p &= \frac{1}{1 + \exp(-\sigma^{-1}(x))} \end{align} であり、次のように計算できる: \begin{align} \exp(-\sigma^{-1}(x)) &= \frac{1}{p} - 1 \\ &= \frac{1-p}{p} \\ - \sigma^{-1}(x) &= \log \left( \frac{1-p}{p} \right) \\ \sigma^{-1}(x) &= - \log \left( \frac{1-p}{p} \right) \\ &= \log \left( \frac{p}{1-p} \right) \end{align}