$(Z-E(Z))^2$ は非負の値をとる確率変数であるから、 与えられた不等式において、 $X=(Z-E(Z))^2, b=c$ とおくと、 \begin{align} P \left( (Z-E(Z))^2 \geq c \right) &\leq \frac{E \left( (Z-E(Z))^2 \right)}{c} \\ &= \frac{V(Z)}{c} \end{align} を得る。
(a) で示した不等式を使って、次のように示せる: \begin{align} P \left( | X-E(X) | \geq a \right) &= P \left( ( X-E(X) )^2 \geq a^2 \right) \\ &\leq \frac{V(X)}{a^2} \end{align}
\begin{align} E(X) &= \frac{n}{2} \\ V(X) &= \frac{n}{4} \end{align}
\begin{align} P \left( X \geq \frac{3n}{4} \right) &= P \left( X - \frac{n}{2} \geq \frac{n}{4} \right) \\ &= \frac{1}{2} P \left( \left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) \\ &\leq \frac{1}{2} \frac{\frac{n}{4}}{\left( \frac{n}{4} \right)^2} \ \ \ \ \ \ \ \ ( \because (1)(b) ) \\ &= \frac{2}{n} \end{align}