3, 6, 9, 12
1, 2, 4, 5, 7, 8, 10, 11
\begin{align} P \left( \bar{A} \right) = \left( \frac{8}{12} \right)^n = \left( \frac{2}{3} \right)^n \end{align}
\begin{align} P(A) &= 1 - P \left( \bar{A} \right) \\ &= 1 - \left( \frac{2}{3} \right)^n \end{align}
\begin{align} P(B) &= 1 - P \left( \bar{B} \right) \\ &= 1 - \left( \frac{10}{12} \right)^n \\ &= 1 - \left( \frac{5}{6} \right)^n \end{align}
\begin{align} P \left( \bar{A} \cap \bar{B} \right) &= \left( \frac{6}{12} \right)^n \\ &= \left( \frac{1}{2} \right)^n \end{align}
\begin{align} P \left( A \cap B \right) &= P(A) + P(B) - P \left( A \cup B \right) \\ &= \left\{ 1 - P \left( \bar{A} \right) \right\} + \left\{ 1 - P \left( \bar{B} \right) \right\} - \left\{ 1 - P \left( \bar{A} \cap \bar{B} \right) \right\} \\ &= 1 + P \left( \bar{A} \cap \bar{B} \right) - P \left( \bar{A} \right) - P \left( \bar{B} \right) \\ &= 1 + \left( \frac{1}{2} \right)^n - \left( \frac{2}{3} \right)^n - \left( \frac{5}{6} \right)^n \end{align}