\begin{align} \int (6x-3)^5 dx &= 3^5 \int t^5 \frac{dt}{2} \ \ \ \ \ \ \ \ (t=2x-1) \\ &= \frac{3^5}{2 \cdot 6} t^6 + C \ \ \ \ \ \ \ \ ( C \text{ は積分定数 } ) \\ &= \frac{81}{4} (2x-1)^6 + C \ \ \ \ \ \ \ \ ( C \text{ は積分定数 } ) \end{align}
\begin{align} \int \frac{1}{\sqrt[3]{1-2x}} dx &= \int t^{- \frac{1}{3}} \frac{-dt}{2} \ \ \ \ \ \ \ \ (t=1-2x) \\ &= - \frac{1}{2} \cdot \frac{3}{2} t^\frac{2}{3} + C \ \ \ \ \ \ \ \ ( C \text{ は積分定数 } ) \\ &= - \frac{3}{4} (1-2x)^\frac{2}{3} + C \ \ \ \ \ \ \ \ ( C \text{ は積分定数 } ) \end{align}
\begin{align} \int x^2 \log x^2 dx &= \frac{1}{3} x^3 \log x^2 - \frac{1}{3} \int x^3 \cdot \frac{2x}{x^2} dx \\ &= \frac{1}{3} x^3 \log x^2 - \frac{2}{3} \int x^2 dx \\ &= \frac{1}{3} x^3 \log x^2 - \frac{2}{9} x^3 + C \ \ \ \ \ \ \ \ ( C \text{ は積分定数 } ) \end{align}
\begin{align} \int \frac{1}{3x^+2x-1} dx &= \int \frac{1}{(x+1)(3x-1)} dx \\ &= \frac{1}{4} \int \left( - \frac{1}{x+1} + \frac{3}{3x-1} \right) dx \\ &= \frac{1}{4} \int \left( - \frac{1}{x+1} + \frac{1}{x-\frac{1}{3}} \right) dx \\ &= - \frac{1}{4} \log |x+1| + \frac{1}{4} \log \left| x - \frac{1}{3} \right| + C \ \ \ \ \ \ \ \ ( C \text{ は積分定数 } ) \end{align}