\begin{align} \lim_{x \to 0} \left( \frac{a^x + b^x}{2} \right)^{\frac{1}{x}} &= \lim_{x \to 0} \left( 1 + \frac{\log (ab)}{2} x + O(x^2) \right)^{\frac{1}{x}} \\ &= e^{\frac{1}{2} \log (ab)} \\ &= \sqrt{ab} \end{align}
\begin{align} \mathrm{d} x &= \mathrm{d} r \cos \theta - r \mathrm{d} \theta \sin \theta \\ \mathrm{d} y &= \mathrm{d} r \sin \theta + r \mathrm{d} \theta \cos \theta \end{align}
\begin{align} x \mathrm{d} y - y \mathrm{d} x &= r^2 \mathrm{d} \theta \end{align}