\begin{align} \lim_{x \to 0} \frac{x^3}{x - \sin x} &= \lim_{x \to 0} \frac{3x^2}{1 - \cos x} \\ &= \lim_{x \to 0} \frac{6x}{\sin x} \\ &= \lim_{x \to 0} \frac{6}{\cos x} \\ &= 6 \end{align}
\begin{align} \int_0^\infty \frac{dx}{1+x^2} &= \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^2 \theta} \frac{d \theta}{\cos^2 \theta} \ \ \ \ \ \ \ \ ( x = \tan \theta ) \\ &= \int_0^\frac{\pi}{2} d \theta \\ &= \frac{\pi}{2} \\ \therefore \ \ \int_0^\infty \int_0^\infty \frac{dx dy}{(1+x^2)(1+y^2)} &= \frac{\pi^2}{4} \end{align}